Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Jun Wan, ${ }^{\text {a }}$ Zheng-Zhong Peng, ${ }^{\text {b }}$ Xue-Mei Li, ${ }^{\text {b }}$ Ping-Kai Ouyang ${ }^{\text {a }}$ and Shu-Sheng Zhang ${ }^{\text {a }}$
${ }^{\text {a College of Life Science and Pharmaceutical }}$ Engineering, Nanjing University of Technology, 210093 Nanjing, Jiangsu, People's Republic of China, and ${ }^{\mathbf{b}}$ College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, 266042 Qingdao, Shandong, People's Republic of China

Correspondence e-mail: shushzhang@126.com

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$
R factor $=0.043$
$w R$ factor $=0.120$
Data-to-parameter ratio $=10.7$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
2-(1H-1,2,3-Benzotriazol-1-ylmethyl)-1-(4-methylbenzoyl)ethyl benzoate

In the title compound, $\mathrm{C}_{23} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O}_{2}$, the molecules are linked into centrosymmetric dimers by $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds. The packing is further stabilized by $\mathrm{C}-\mathrm{H} \cdots \pi$ and $\pi-\pi$ interactions.

Comment

In order to search for new benzotriazole compounds with higher bioactivity, the title compound, (I), was synthesized and its structure is presented here. The bond lengths in the benzotriazole ring system show a character intermediate between single and double bonds. The benzotriazole system is almost planar, with a dihedral angle of $0.8(1)^{\circ}$ between the triazole (A, atoms $\mathrm{N} 1-\mathrm{N} 3 / \mathrm{C} 10 / \mathrm{C} 11$) and benzene rings $(B$, $\mathrm{C} 10-\mathrm{C} 15)$. The dihedral angles between the mean planes of the benzotriazole system and rings $C(\mathrm{C} 1-\mathrm{C} 6)$ and $D(\mathrm{C} 17-$ C22) are 11.7 (1) and $84.2(1)^{\circ}$, respectively. The dihedral angle between rings C and D is $83.7(1)^{\circ}$. The relative orientation of the three rings is determined by the $s p^{3}$-hybridization character of the chiral atom C8.

(I)

In the crystal structure, the molecules are linked into centrosymmetric dimers by weak $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds (Fig. 2, Table 1). Further weak $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds connect the dimers into a three-dimensional framework. The packing is also stabilized by $\mathrm{C}-\mathrm{H} \cdots \pi$ and $\pi-\pi$ interactions involving the benzotriazole ring system, with $C g \cdots C g(1-x$, $1-y,-z)=3.864 \AA$, where $C g$ is the centroid of the C10-C15 ring.

Experimental

Bromine ($3.2 \mathrm{~g}, 0.02 \mathrm{~mol}$) was added dropwise to a solution of 3-benzotriazol-1-yl-1-(4-methylphenyl)propan-1-one ($5.3 \mathrm{~g}, 0.02 \mathrm{~mol}$) and sodium acetate $(1.6 \mathrm{~g}, 0.02 \mathrm{~mol})$ in acetic acid (50 ml). The reaction was maintained for 13 h . Water (50 ml) and chloroform $(20 \mathrm{ml})$ were then added. The organic layer was washed successively with a saturated sodium bicarbonate solution and brine, dried over anhydrous magnesium sulfate, and the chloroform solution filtered.

Received 17 July 2006
Accepted 8 September 2006

The mixture was cooled with ice-water, then an acetone solution $(10 \mathrm{ml})$ of 2-benzoic acid $(2.4 \mathrm{~g}, 0.02 \mathrm{~mol})$ and triethylamine $(2.8 \mathrm{ml})$ was added. The mixture was stirred at room temperature for about 2 h . The solution was then filtered and concentrated. Single crystals suitable for X-ray analysis were obtained by slow evaporation of an ethanol solution at room temperature over a period of one week.

Crystal data

$\mathrm{C}_{23} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O}_{3}$
$M_{r}=385.41$
Triclinic, $P \overline{1}$
$a=9.5987(9) \AA$
$b=10.2272(9) \AA$
$c=11.4321(10) \AA$
$\alpha=116.482(1)^{\circ}$
$\beta=96.928(1)^{\circ}$
$\gamma=97.444(1)^{\circ}$

Data collection

Refinement

Refinement on F^{2}

$$
\begin{aligned}
& \begin{array}{l}
w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0637 P)^{2}\right. \\
\quad+0.235 P] \\
\text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
(\Delta / \sigma)_{\max }<0.001 \\
\Delta \rho_{\max }=0.20 \mathrm{e} \AA^{-3} \\
\Delta \rho_{\min }=
\end{array} \mathrm{C}^{2} 0.18 \mathrm{e}^{-3}
\end{aligned}
$$

$$
\begin{aligned}
& V=975.72(15) \AA^{3} \\
& Z=2 \\
& D_{x}=1.312 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation } \\
& \mu=0.09 \mathrm{~mm}^{-1} \\
& T=293(2) \mathrm{K} \\
& \text { Block, colourless } \\
& 0.41 \times 0.25 \times 0.18 \mathrm{~mm}
\end{aligned}
$$

$w R\left(F^{2}\right)=0.120=0.043$
$S=1.06$
2808 reflections
262 parameters

H -atom parameters constrained

Table 1
Hydrogen-bond geometry $\left(\AA^{\circ},{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 23-\mathrm{H} 23 C \cdots C^{\mathrm{i}}$	0.96	2.85	3.572	133
$\mathrm{C}^{\mathrm{i}}-\mathrm{H} 9 A \cdots \mathrm{O}^{1 i}$	0.97	2.59	$3.517(2)$	161
C15-H15 $^{\mathrm{C}} \mathrm{O1}^{\mathrm{ii}}$	0.93	2.46	$3.351(3)$	161

Symmetry codes: (i) $x, y-1, z-1$; (ii) $-x+1,-y,-z$.
All H atoms were located in difference Fourier maps and constrained to ride on their parent atoms, with $\mathrm{C}-\mathrm{H}$ distances in the range $0.93-0.98 \AA$, and with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$ or $1.5 U_{\text {eq }}($ methyl C).

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997a); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997a); molecular graphics: SHELXTL (Sheldrick, 1997b); software used to prepare material for publication: SHELXTL, PARST (Nardelli, 1995) and PLATON (Spek, 2003).

This project was supported by the Special Project of Qingdao for Leadership of Science and Technology (No. 05-2-JC-80) and the Outstanding Adult-Young Scientific Research Encouraging Foundation of Shandong Province (No. 2005BS04007).

Figure 1
The molecular structure of (I), showing 50% probability displacement ellipsoids and the atom-numbering scheme.

Figure 2
Packing diagram of (I), down the a axis, showing the hydrogen-bonded (dashed lines) dimers.

References

Nardelli, M. (1995). J. Appl. Cryst. 28, 659.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (1997a). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Sheldrick, G. M. (1997b). SHELXTL. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.
Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.

[^0]: (C) 2006 International Union of Crystallography All rights reserved

